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A B S T R A C T

Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health
concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low;
therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel
strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-
structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6
mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings
indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs pro-
vided protection to mice lacking the type I interferon receptor (IFNAR�/�) against lethal TBEV challenge, with
undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not
exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the
control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral
CD4þ T cells in vivo, including TNF-αþ, IL-2þ, and IFN-γþ T cells. Altogether, the findings suggest that noninfectious
VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
1. Introduction

Tick-borne encephalitis virus (TBEV) is a zoonotic pathogen that
causes mild or moderate febrile illness and fatal encephalitis with
sequelae in humans (Bogovic and Strle, 2015; Taba et al., 2017). TBEV is
endemic over a wide area of Europe and Asia and causes more than 13,
000 cases annually worldwide, and the number of cases has increased
over the past few decades owing to global climate change and expanding
human habitats (Suss, 2008; Kunze, 2011). Based on sequences analysis
of complete genome, there are three main TBEV subtypes: the Far Eastern
(TBEV-FE), the European (TBEV-Eu), and the Siberian (TBEV-Sib) sub-
types (Ruzek et al., 2019). The morbidity and mortality of TBE varies
among these subtypes. TBEV-FE infections are the most severe, with a
mortality rate of up to 40%. TBEV-Eu is associated with neurological
sequelae in up to 10% of patients, with a 0.5%–2% mortality rate, while
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TBEV-Sib infections are prone to develop prolonged infections with a
2%–3% mortality rate (Pulkkinen et al., 2018).

TBEV belongs to the Flavivirus genus within the Flaviviridae family. Its
genome is a single-stranded, positive-sense RNA with a length of
approximately 11 kb nucleotides. The genome has one open reading
frame (ORF) that encodes a single polyprotein which is co- and post-
translationally cleaved by cellular and viral proteases into three struc-
tural proteins, including core (C), precursor-M (prM), and envelope (E)
proteins, and seven non-structural proteins, namely, NS1, NS2A, NS2B,
NS3, NS4A, NS4B, and NS5 (Fig. 1A) (Lindquist and Vapalahti, 2008;
Füzik et al., 2018; Pulkkinen et al., 2018). Mature TBEV particles are
approximately 50 nm in diameter and consist of a nucleocapsid sur-
rounded by M and E proteins that are anchored within a lipid bilayer
(Pulkkinen et al., 2018). The structural proteins mainly participate in the
formation of viral particles, while the non-structural proteins play an
hen).
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Fig. 1. Construction of the candidate TBE VLP vaccine. A Schematic representation of the single ORF in the TBEV genome that translates into a polyprotein comprising
the structural and non-structural proteins. The structural proteins are depicted in shades of blue while the non-structural proteins are represented in shades of orange.
The complex formed by the viral NS3 protease and the NS2B co-factor self-cleaves before cleaving the C protein. The host signalase protein is also involved in
polyprotein maturation. The furin protein of the host finally cleaves the pr portion from the M protein to release the E protein fusion peptide. The black arrows indicate
viral serine protease cleavage sites, the triangles indicate host signal peptidase cleavage sites, the interrogation mark indicates the cleavage site of an unknown host
protease, and the red arrow indicates a furin cleavage site. B Schematic depicting the construction of the VLP-based vaccine candidate. The strategy used for
assembling the VLP was based on the co-expression of the structural proteins (C/prM/E) and non-structural proteins (NS2B/NS3Pro) of TBEV. The viral NS3 protein
was truncated and only contained the N-terminal protease domain, which was placed in a single transcription unit with the NS2B co-factor. C Buoyant density-gradient
analysis of the constructed VLPs. The plasmids were transfected into Expi293 cells, and the supernatants were collected after four days. The VLPs were purified by
density gradient centrifugation. The expression of the viral E protein was confirmed by Western blotting. D Analysis of the purified VLPs by Coomassie blue staining
and Western blotting. E TEM images of the wild type TBEV and the VLPs. The results represent the mean � standard deviation (SD) of data obtained from at least three
independent experiments.
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important role in viral replication and evading the innate immune
response (Werme et al., 2008; Yang et al., 2020). The E protein is a viral
surface glycoprotein that mediates receptor binding and membrane
fusion, and plays an important role in inducing protective immunity and
vaccine development.
768
Despite the health threat posed by TBEV, no licensed antiviral drugs
against TBEV exist at present, and current strategies for the treatment of
TBEV are only supportive in practice (Studahl et al., 2013; Taba et al.,
2017). Therefore, active immunization is the most important protective
measure against TBEV infection. Despite the good tolerability, the safety
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and field efficacy of the currently available inactivated vaccines against
TBEV have certain disadvantages (Loew-Baselli et al., 2006; Demicheli
et al., 2009), such as time-consuming vaccination schedules and incom-
plete protection, particularly among older adults. The efficient induction
of virus-specific memory B and T cell responses is pivotal for providing
durable protective immunity and preventing vaccination breakthrough
infections in TBEV vaccinees (Kubinski et al., 2020). Therefore, the
exploration and development of novel vaccination strategies may aid in
overcoming some limitations of currently licensed TBEV vaccines.

Considerable efforts have been made in recent years towards devel-
oping vaccines based on TBEV particles containing different forms of the
E protein generated using recombinant subviral particles. The efficacy of
recombinant subviral particles is similar to inactivated vaccine in terms
of antibody induction and protection against viral challenge, while all
soluble forms of the E protein have considerably lower immunogenicity
(Heinz et al., 1995). One study demonstrated that the vaccination of mice
with a recombinant vaccinia virus encoding the prM and E proteins
provided robust protection following challenge infection with TBEV.
However, according to the dose of vaccination, the titers of the neutral-
izing antibody (NAb) were relatively low and did not increase consid-
erably (Holzer et al., 1999). It is therefore necessary to develop improved
vaccines with stronger immunogenicity.

Virus-like particles (VLPs) are highly immunogenic and completely
devoid of viral genetic material that is necessary for replication. VLP-
based vaccines are therefore non-infectious and safer than live-
attenuated or whole-inactivated vaccines (Chen and Lai, 2013).
Notably, the small size of VLPs allows rapid diffusion through lymph
nodes and facilitates antigen presentation for the induction of B and T
cells. VLPs have been employed for investigating the function, morpho-
genesis, and structure of proteins, and for generating vaccines against
flaviviruses (Liu et al., 2014; Taylor et al., 2016; Yamaji and Konishi,
2016; Boigard et al., 2017), which can be produced in yeast, plant, insect,
or mammalian cells (Liu et al., 2005; Urakami et al., 2017; Metz et al.,
2018). Incorporating the C protein into the VLPs can increase the
numbers of epitopes, as demonstrated on Zika VLPs (Garg et al., 2017; Lin
et al., 2018). The NS3 protein functions as a viral serine protease (with
NS2B as a co-factor), RNA helicase, and nucleoside triphosphatase, and
plays a central role in viral replication and protein processing (Lobigs,
1993; Stocks and Lobigs, 1998). Recent studies have demonstrated that
Zika VLPs containing the full-length C, prM, and E proteins along with
the viral NS2B/NS3 protease complex, generate higher Zika VLP titers
and antibody concentrations (Malogolovkin et al., 2023). A similar study
revealed that the co-expression of the structural proteins (C/prM/E) and
non-structural (NS2B/NS3) proteins of the Zika virus (ZIKV) increased
the self-assembly of C and prM proteins into particles closely resembling
ZIKV, and proved to be effective as live-attenuated or whole-inactivated
vaccines (Boigard et al., 2017).

In this study, we used a similar strategy to design and evaluate the
VLP vaccine against TBEV. Our results showed that the VLPs efficiently
induced E-specific humoral immune responses in mice. Immunization
with VLPs induced multiple CD4þ T cell response and prevented mice
from a lethal TBEV challenge. These results suggest that VLPs represent a
promising vaccine candidate for the prevention of TBEV infection.

2. Materials and methods

2.1. Virus and cell lines

The TBEV-FE (WH2012, KJ755186) and TBEV-Eu (Neudoerfl,
U27495) subtypes of TBEV were obtained from the National Virus
Resource Center of China, and propagated and titrated in BHK-21 cell
lines as previously described (Li et al., 2021). BHK-21 cells (ATCC®
CCL-10) were cultured in Dulbecco's modified Eagle's medium (DMEM,
Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco),
100 U/mL penicillin and 100 μg/mL streptomycin (Invitrogen) at 37 �C
in an atmosphere of 5% CO2. Expi293F cells (Thermo Fisher, A14527)
769
were maintained in Expi293F culture medium (Thermo Fisher,
A1435101) and incubated in an orbital incubator shaker at 37 �C in an
atmosphere of 5% CO2.

2.2. Plasmid construction and molecular cloning

The sequences encoding the structural (C/prM/E) or non-structural
(NS2B/NS3Pro) proteins of TBEV were chemically synthesized by
TSINGKE Biological Technology according to codon optimization, and
derived from the genome of the WH2012 strain of TBEV. The nucleotide
sequence of these plasmids was showed in Supplementary Table S1. The
synthesized DNA fragments were subcloned into the pcDNA3.1(�)
plasmid at the XhoI/KpnI restriction sites, followed by transformation
into chemically competent DH5α cells. The resulting plasmids were pu-
rified using the EndoFree Plasmid Maxi Kit (Qiagen, MD).

2.3. Production and purification of VLPs

Expi293 cells were diluted to a density of 1.5 � 106 cells/mL before
transfection with pcDNA3.1-NS2B/NS3Pro and pcDNA3.1-C/prM/E at a
ratio of 1:2, then the cells were cultivated at 37 �C in an atmosphere of
5% CO2, with agitation at 150 rpm. For the production of VLPs, the
plasmids (480 μg) were added to polyethylenimine hydrochloride (1350
μg; Polysciences) in 10 mL of Expi293 medium and incubated for 10 min,
the mixture was then added to 470 mL of cell solution. The transfected
cells were harvested at 4 days post-transfection and the supernatant was
collected by two successive centrifugation steps at 400 �g for 10 min at
4 �C, then 10,000 �g for 10 min at 4 �C. The proteins in the supernatant
were precipitated using 8% (wt/vol) polyethylene glycol 8000 and
incubated overnight at 4 �C.

For purification of the VLPs, protein pellets were collected by
centrifugation at 10,000 �g for 1 h at 4 �C and loaded onto a 20% (wt/
vol) sucrose cushion in TNE buffer (10 mmol/L Tris-HCl, pH 8.0, 120
mmol/L NaCl, and 1 mmol/L EDTA), followed by ultracentrifugation at
87,000�g for 2 h at 4 �C. The pellet was re-suspended in TNE buffer, and
the VLPs were subsequently purified by ultracentrifugation through a
linear sucrose density gradient (20%–60%, [wt/vol]) at 250,000 �g for 4
h at 4 �C. Selected fractions were further purified and concentrated using
an Amicon Ultra Centrifugal Filter Unit (Millipore, MA, USA).

2.4. Purification of TBEV E protein and generation of anti-TBEV
polyclonal E antibody

The coding sequence for residues 1–401 aa in the ectodomain of the E
protein (sE) of the WH2012 strain of TBEV were codon optimized and
cloned into a pET21a vector with a C-terminal His10-tag. The sE proteins
were then expressed in Rosetta (DE3) as inclusion bodies and subse-
quently refolded in vitro as previously described (Dai et al., 2016). The
refolded proteins were concentrated using an Amicon 400 concentrator
with a 30-kDa cutoff membrane. The sE proteins were further purified by
gel filtration using an AKTA Pure System with a HiLoad 16/60 Superdex
200 PG column (GE Healthcare).

Briefly, C57BL/6 mice were immunized with the purified TBEV E
protein by three intramuscular injections. Anti-TBEV E antibody was
isolated from the sera of the immunized C57BL/6 mice. The character-
ization of the antibody was subsequently verified by Western blotting
and immunofluorescence (IF).

2.5. Western blotting

The fractions obtained by centrifugation were subsequently separated
by electrophoresis. Briefly, 10 μL of each sample was resolved by sodium
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and the
blots were transferred to a nitrocellulosemembrane. Themembranes were
blocked by incubatingwith 5% non-fat milk in TBST (10mmol/L Tris-HCl,
pH 7.4, 130 mmol/L NaCl, 2.7 mmol/L KCl, and 0.1% Tween-20) for
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1 h at room temperature followed by overnight incubation at 4 �C using an
anti-TBEV mouse polyclonal E antibody. The membranes were washed
thrice with TBST and subsequently incubated for 1 h with a secondary
antibody. The membranes were finally washed with TBST and the images
were captured using a FluorChemHD2 system.

2.6. Negative-stain electron microscopy

For electron microscopy, 10 μL of each sample was placed on the grid
and incubated for 1 min, following which excess sample was removed by
touching the edge of the grid to a filter paper. Negative staining was
applied using 10 μL of 2% phosphotungstic acid (PTA; pH 7.0) and
incubated for 3 min. Excess stain was gently removed with a filter paper.
The grid was dried at room temperature, and transmission electron mi-
croscopy (TEM) images were captured using a 200 kV Tecnai electron
microscope.

2.7. Mice infection experiments

Eight-week-old male C57BL/6 mice were used for the immunization
and viral neutralization experiments. The mice (n ¼ 5 per group) were
immunized by twice intramuscular injections with PBS or 10 μg of VLPs.
The dosage of VLPs used in this study were referenced as previously
described (Vang et al., 2021; Zhao et al., 2021; Yang et al., 2022). Blood
samples were collected from the orbital sinus at indicated time points,
and transferred to blood collection tubes. Serum was separated by
centrifugation at 3000�g for 10 min at room temperature (~25 �C) and
stored at �80 �C until further use.

IFNAR�/� mice, with a C57BL/6 background, were obtained from the
Suzhou Institute of Biomedical Engineering and Technology, CAS. These
mice lack the receptor for type I interferons. Six to eight-week-old male
IFNAR�/� mice were used for immunization and challenge experiments
(Phanthanawiboon et al., 2016). The mice (n ¼ 10 per group) were
immunized with PBS or 10 μg of VLPs as mentioned above. They were
then challenged subcutaneously with a lethal dose of the WH2012 strain
of TBEV (3.2� 106 PFU) at 6 weeks post-second injection of either PBS or
VLPs. The body weights and survival rates of the mice weremonitored for
14 days following challenge. Blood samples and tissues of the mice were
collected at the indicated time points, and viral quantitation was per-
formed using the TCID50 assay. All the experiments were repeated
independently at least once.

2.8. Determination of antibody titers

The level of TBEV-specific IgG antibody in the immunized mice was
determined by enzyme-linked immunosorbent assay (ELISA). Briefly, 96-
well plates were coated with purified TBEV-E protein and blocked with
PBS containing 5% skimmilk. Sera from the immunizedmice were added
to the coated wells at a dilution of 1:50 and incubated. This was followed
by incubation with a horseradish peroxidase (HRP)-conjugated goat anti-
mouse IgG secondary antibody. A two-component 3,30,5,50-tetrame-
thylbenzidine (TMB) color development kit (Beyotime Bio-technology)
was used for detecting the bound antibody. Following the addition of
1 mol/L H2SO4 stop solution, the optical density was measured at a
wavelength of 450 nm using a multimode microplate reader (Varioskan
Flash; Thermo Fisher).

2.9. Evaluation of NAb titers

The neutralization of E antibody was evaluated. The TBEV-FE strain
(MOI ¼ 0.1) was preincubated with the E antibody diluted at a 5-fold
dilution, from a starting dilution of 1:10, for 1 h at 37 �C. The mixtures
were then added to a monolayer of BHK-21 cells at a density of
8 � 104/ well before seeding into 24-well plates. The cells were further
incubated at 37 �C in an atmosphere of 5% CO2 for 3 days. The relative
intracellular viral RNA was quantified by qRT-PCR. Based on the results
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of E antibody neutralization assay, the serum samples of the vaccinated
mice were suitably diluted to a ratio of 1:50 for subsequent experiments.

The serum samples were heat inactivated for 30 min at 56 �C. 2� 104

BHK-21 cells were seeded in a 96-well plate for 20 h. The TBEV-FE strain
WH2012 (MOI ¼ 0.1) or TBEV-Eu strain Neudoerfl (MOI ¼ 0.1) was
preincubated with the serum samples diluted with the sera obtained from
the vaccinated mice at a dilution of 1:50, for 1 h at 37 �C, and then 150 μL
mixtures were inoculated onto monolayer BHK-21 cells. Three days after
inoculation, cytopathic effect (CPE) was quantified. The inhibition of
mice sera was calculated based on the CPE rates of TBEV.

2.10. TCID50 assay

TBEV titer was determined by 50% tissue culture infective dose
(TCID50) assay with 10-fold serial dilutions in BHK-21 cells as described
(Yang et al., 2021; Tang et al., 2023). Briefly, BHK-21 cells were seeded
in 96-well plates at a density of 2� 104/well and inoculated with serially
diluted serum samples and tissue homogenate. Eight replicates were set
for each dilution. The wells with CPE were counted on day 3
post-inoculation, and the TCID50 was calculated by the Reed-Muench
formula.

2.11. Histological analyses

The samples of the brain and small intestinal tissues of the vaccinated
mice following challenge were fixed with 4% paraformaldehyde,
embedded in paraffin, and sliced into 3.5-mm-thick sections. The fixed
tissues were subjected to hematoxylin-eosin (H&E) staining and immu-
nofluorescence assays. For the immunofluorescence studies, the tissue
sections were treated with the TBEV E antibody (1:500) and subsequently
washed with PBS. The sections were then dried, and the tissues were
incubated with 488-conjugated goat-anti-mouse secondary antibody
(Invitrogen) at a dilution of 1:500. Slides were washed with PBS and
stained with DAPI (Invitrogen) at a dilution of 1:1000. Images were
finally captured using a Pannoramic MIDI system (3DHISTECH, Buda-
pest) and a FV1200 confocal microscope (Olympus). Clinical scores were
used to assess the severity of brain or intestinal injury. Detailed histo-
logical assessments of brain and intestinal tissues were provided in
Supplementary Table S2 and Table S3.

2.12. RNA extraction and qRT-PCR

Total cellular RNA was extracted with Trizol reagent according to the
manufacturer's protocols (Invitrogen, USA). Specific gene transcripts
were quantified by one-step real-time qRT-PCR with specific primers and
the HiScript II One Step qRT-PCR SYBR Green Kit (Vazyme) on the
Applied Biosystems QuantStudio 6 Flex. The data were normalized to the
expression of the β-actin for each individual sample. The relative
expression level was calculated by 2�ΔΔCt method. The primer sequences
for WH2012 were designed as follows: Forward: 50-CACAACCTG-
GAGTGCTCG-3’; Reverse: 50-ACCATGTTCGGCCTTATC-3’.

2.13. RNA sequencing (RNA-seq)

Brain tissues of the mice in the PBS and VLP groups were harvested at
7 days post-infection (dpi). Total RNA was extracted with Trizol reagent.
Then the RNA-Seq was performed by Beijing Qingke Biotechnology Co.,
Ltd. Briefly, sequencing libraries were generated for Illumina®. Library
acquisition was obtained by sequencing on an Illumina HiSeq 4000
platform, yielding 150 bp paired-end reads.

2.14. Flow cytometric analyses

C57BL/6 mice were immunized with either PBS or 10 μg of VLP for
both prime and boost immunization. Splenocytes were isolated from the
spleens of immunized mice after 14 days of boost immunization to
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analyze cytokines induction following immunization. Briefly, the iso-
lated splenocytes were stimulated by incubation with Phorbol myristate
acetate (PMA) plus ionomycin (IONO) or E antigens at 37 �C for 6 h in the
presence of GolgiPlug (BD Biosciences). The treated cells were then
washed with a staining buffer (2% FBS in PBS) and stained by incubating
with an FITC anti-mouse CD4 antibody (BioLegend) for 30 min at 4 �C.
The cells were washed and subsequently fixed and permeabilized with
BD Fix/Perm buffer at 4 �C for 20 min. The cells were then stained with
the PE anti-mouse IFN-γþ antibody (BioLegend), pacific blue™ anti-
mouse IL-2þ antibody, and the APC/Cyanine7 anti-mouse TNF-αþ anti-
body (BioLegend). Finally, the cells were washed and analyzed by flow
cytometry.
2.15. Statistical analyses

Statistical analyses were performed using GraphPad Prism 6 software.
Significant differences between groups were determined by one-way
analysis of variance (ANOVA) and two-tailed Student's t-tests. Differ-
ences were considered to be statistically significant at *P < 0.05, **P <

0.01, and ***P < 0.001.

3. Results

3.1. Generation of TBE VLPs

To produce recombinant VLPs, structural proteins (C/prM/E) were
co-expressed with non-structural proteins (NS2B/NS3Pro) in Expi293F
cells (Fig. 1B). The VLPs were harvested from the cell culture supernatant
and purified as described previously (Boigard et al., 2017). Following
buoyant density-gradient sedimentation, the main components of puri-
fied particles (E protein) were analyzed by SDS-PAGE, as depicted in
Fig. 1C. The TBEV E protein exhibited the highest density of about 1.15
g/mL. Coomassie blue staining revealed that the E protein was the pre-
dominant component in the prepared VLPs, and the identity of the E
protein was further verified by Western blotting (Fig. 1D). The result of
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negative-stain TEM revealed that the VLPs were homogeneous spherical
structures with a diameter of approximately 40–50 nm (Fig. 1E). Their
morphological characteristics were similar to the wild type TBEV parti-
cles (Fig. 1E), which were consistent with previous study (Füzik et al.,
2018; Pulkkinen et al., 2018).

3.2. VLPs induced robust NAb responses

The C57BL/6 mice received twice intramuscular injections of 10 μg
VLPs over a four-week interval (Fig. 2A). The neutralizing ability of the
sera was evaluated two weeks post-boost injection. A clear correlation
between serum dilution and neutralizing effect was observed, with
samples diluted up to a factor of 1:250 maintaining robust TBEV
neutralizing ability (Fig. 2B).

Total serum IgG response in vaccinated mice was determined by
ELISA, by using the purified E protein of TBEV. The TBEV E protein an-
tigen and the anti-E antibody were produced in our laboratory and
characterized as depicted in Supplementary Fig. S1. The results of ELISA
demonstrated that vaccination with the VLPs stimulated a high total
serum IgG response, and the prime antibody response increased by 2.5-
fold following boost immunization (Fig. 2C). Additionally, the anti-
bodies elicited by the VLPs significantly neutralized both TBEV-FE and
TBEV-Eu infections in BHK-21 cells, with inhibition rates reaching up to
90% (Fig. 2D). Altogether, these findings suggested that the VLPs
exhibited superior immunogenicity and induced high levels of humoral
immunity (IgG and NAb) against different subtypes of TBEV.

3.3. VLPs protected mice against TBEV challenge

In order to evaluate the immunoprotective efficacy of the VLPs, VLP-
immunized IFNAR�/� mice were challenged with a lethal dose (3.2 �
106 PFU) of the WH2012 strain of TBEV by intramuscular injection after
two weeks post-boost immunization with 10 μg VLPs (Fig. 3A). Mouse
body weight and physical appearance were monitored for two weeks. We
observed that the body weight of infected mice was decreased
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continuously, with a rapid decrease observed at 3 dpi (Fig. 3B). More-
over, the infected mice displayed some abnormal behaviors, such as
listlessness, circling and freezing, and all the infected mice died within 8
dpi (Fig. 3C). In contrast, immunized mice survived the challenge, and
their weights did not decrease significantly (Fig. 3B and C).

Viremia was determined by TCID50 assays at 3 dpi, and brain and small
intestinal tissues were obtained at 7 dpi. The viremia of the control group
was notably high (7.9 � 104 TCID50/mL) (Fig. 3D), with average values in
the brain and intestinal tissues reaching 1.0� 107 and5.0� 105 TCID50/mL,
respectively (Fig. 3E and F). In contrast, the mice that had been immunized
with the VLPs did not exhibit any neurological symptoms and the viral loads
in the serum samples, brain, and intestinal tissues were negligible or unde-
tectable (Fig. 3D–F). Altogether, these findings confirmed that VLPs
conferred complete protection against TBEV infection.

3.4. Pathological changes in vaccinated mice following TBEV challenge

Pathological changes in brain and intestinal tissues were detected by
H&E staining at 7 dpi. Histological analysis of brain tissue sections revealed
that the control group exhibited neuronal necrosis, degeneration, and
disruption of normal cytoarchitecture, as depicted by the black arrow in
Fig. 4A. Analysis of the intestinal tissues revealedmoderate abnormalities,
including the presence of villi with loose and irregular structures and
abscission of the intestinal mucosa (Fig. 4B). The results of histological
analysis also revealed the massive infiltration of inflammatory cells in the
mucosal layer, which is depicted by the red arrow in Fig. 4B. In contrast,
there were no obvious lesions in the brain and intestinal tissues of the
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immunized mice, and the viral antigen was detected by immunohisto-
chemistry (Fig. 4A and B). Consistent with the pathological observations,
noviral antigenwas identified inVLP-vaccinated group.Histological scores
were assessed and statistically analyzed as shown in Fig. 4C, and the score
of the VLP group was lower than that of the control group.

It has reported that the increased levels of various cytokines in the
serum and brain tissues of TBEV-infected mice are generally determined
in a time-dependent manner (Pokorna Formanova et al., 2019). The in-
duction of pro-inflammatory cytokines in the brain tissues was therefore
determined at 7 dpi by RNA-seq. The findings revealed significant
upregulation of certain key inflammatory cytokines, including CXCL10,
RANTES, and MCP-1, in non-immunized mice. However, vaccination
with the VLPs protected mice from TBEV challenge, with few or no
pro-inflammatory cytokines detected in the vaccinated mice, which
could partially explain the alleviated brain pathology (Fig. 4D). Alto-
gether, these results demonstrated that vaccination with the VLPs did not
induce any pathogenic alterations, and few or no inflammatory cytokines
were activated and recruited.

3.5. CD4þ T cell responses in VLP-vaccinated mice

To determine the ability of VLPs to induce CD4þ T cell immune re-
sponses after VLPs vaccination following the prime-boost immunization
strategy, the mice in the immunized and non-immunized groups were
sacrificed after two weeks post-boost immunization. Splenocytes were
isolated and assayed for cytokines production. The CD4þ T cells were
assayed for the expression of TNF-αþ, IL-2þ, and IFN-γþ by flow cytometry
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following stimulation with PMA/ionomycin or E antigens. Unstimulated
cells were used as the negative control. The results demonstrated no sig-
nificant differences in the percentage of TNF-αþ, IL-2þ, and IFN-γþ CD4þ T
cells between the control and VLP groups in the absence of stimulation
(Fig. 5AandB).However, stimulationwithPMA/ionomycin andEantigens
induced higher IFN-γþ, IL-2þ, and TNF-αþCD4þ T cell responses in the VLP
group. Altogether, these findings suggested that immunization with the
VLPs could induce T cell-mediated immunity in mice.

4. Discussion

TBEV infection causes a serious neurological condition in human;
however, there are no specific antiviral treatments for TBEV at present.
Traditional methods such as formaldehyde-inactivated vaccines or re-
combinant vaccinia virus-based TBEV vaccines provide incomplete pro-
tection against TBEV or have relatively low immunogenicity. These
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challenges can be addressed by VLP-based vaccines, which are known to
be safe, generate an effective immune response, and can readily be scaled
up for cost-effective production (Jeong and Seong, 2017). The VLPs of
TBEV generated in this study induced higher NAb titers and CD4þ T cell
immune response in the immunized mice, and protected IFNAR�/� mice
against a lethal TBEV challenge. The study describes a promising strategy
for improving immunity against TBEV infection which could serve as a
potential vaccination approach for combating TBEV.

This study describes a novel strategy for generating VLPs by co-
expressing the C/prM/E proteins and the NS2B/NS3Pro plasmids of
TBEV in Expi293 cells. The purity and composition of the purified VLPs
were assessed by Coomassie blue staining and Western blotting. The
presence of the E protein was verified by Western blotting and exactly
correlated with the E protein visualized in Coomassie blue staining. The
M protein could not be clearly visualized in the gel following Coomassie
blue staining, which was possibly attributed to the small size and low
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concentration. The M and C proteins in the purified VLPs were not
detected by Western blotting owing to the absence of the corresponding
antibodies. Nevertheless, a study aimed at assembling Zika VLPs using
the same protocol reported that the major structural (E and M) proteins
can be identified by Western blotting using specific antibodies (Boigard
et al., 2017). Another study used a bicistronic vector expressing the
C/prM/E and NS2B/NS3 proteins of ZIKV to generate C/prM/E VLPs
could induce a superior NAb response compared to only expressing
prM/E VLPs, and the C-specific antibodies were detected in the immu-
nized mice (Garg et al., 2019). Additionally, the TBE VLPs purified in our
study exhibited homogeneous spherical structures with a diameter of
approximately 40–50 nm, similar in size, morphology, and antigenic
composition to wild type TBEV (Füzik et al., 2018). In contrast, recom-
binant TBEV subviral particles which only contained prM-E were
observed about 30 nm in diameter (Liu et al., 2005).

It is known that TBEV NAbs primarily target epitopes located in the E
protein. However, immunization with various soluble forms of whole
dimeric or membrane anchor-free TBEV E proteins fail to induce the pro-
duction of viral NAbs and are incapable of inducing the necessary immu-
nogenicity inmice (Heinz et al., 1995). Similarly, DNAvaccines driving the
intracellular expression of whole or truncated TBEV E proteins, or the
secretion of TBEV E dimers, fail to induce the production of viral NAbs and
provide robust protection against TBEV (Aberle et al., 1999). The correct
conformation of E protein determines the high-level immunogenicity of
vaccines. In our study, specific antibodies elicited by the VLPs were suffi-
cient to provide protection against the different subtypes of TBEV. The
findings were consistent with those of studies on immunization with vac-
cines based on TBEV-Eu or TBEV-FE which induced the production of
cross-subtype reactive antibodies (Fritz et al., 2012; Domnich et al., 2014;
Morozova et al., 2014; Chernokhaeva et al., 2016; Mcauley et al., 2017).

In this study, the mice were challenged with a lethal dose of TBEV,
and a high level of viremia was observed on 3 dpi. The viremic phase was
followed by the entry of the virus into the brain and intestinal tissues,
which was consistent with the results of previous studies (Rů�zek et al.,
2011; Palus et al., 2013). Importantly, the body weights of the immu-
nized mice did not decrease and the mice survived the challenge, and the
viral load in the sera and tissues was significantly lower than that of the
non-immunized mice. Further histopathological analysis revealed the
presence of obvious neuronal lesions and abnormal intestinal morpho-
logical structure in the control mice, while the mice in the VLP group
exhibited normal form of organization. TBEV infection primarily target
neurons, and cause neuronal damage and death (Mandl, 2005). Our
murine model of TBE recapitulates the pathogenesis observed in previous
studies (Palus et al., 2013).

The levels of various chemokines, colony-stimulating factors, and pro-
inflammatory cytokines increase in the brain tissues of TBEV-infected
mice (Pokorna Formanova et al., 2019). Analysis of the inflammatory
cytokines in the brain tissues of mice following TBEV challenge revealed
that CXCL10 was the most robustly upregulated chemokine in the brain.
It has been reported that CXCL10 plays important roles in the recruitment
of T cells expressing CXCR3 to the brain (Lepej et al., 2007; Groom and
Luster, 2011; Pokorna Formanova et al., 2019); However, excessively
high levels of CXCL10 in the central nervous system (CNS) can be
harmful to the host (Sui et al., 2004, 2006). CXCL10 can cause patho-
logical alterations via the excessive recruitment of cytotoxic T cells, and
via its cytotoxic effects on neurons (VanMarle et al., 2004). Other studies
have reported that the levels of CXCL10 are higher in the brain tissues of
TBEV-infected mice at the time of viremia and viral neuro invasion
(Pokorna Formanova et al., 2019). Increased levels of CXCL10 have also
been detected in the cerebrospinal fluid (CSF) of humans infected with
TBEV (Lepej et al., 2007; Zajkowska et al., 2011). It has also reported that
the level of RANTES is higher in the CSF of TBE patients (Grygorczuk
et al., 2006, 2018). Our findings are consistent with the results of these
studies. The RANTES-mediated migration of monocytes and T
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lymphocytes in the blood may contribute to brain damage during TBEV
infection (Zheng et al., 2018). We also revealed that the production of
several key pro-inflammatory cytokines and chemokines, including
MCP-1, MIP-1α, MIP-1β, and CXCL1 were upregulated following TBEV
infection. The increased production of pro-inflammatory factors may
mediate neuronal necrosis during the pathogenesis of TBEV. The
expression of cytokines was undetectable in the immunized mice, which
suggested that the VLPs alleviated the aggravated immune response
induced by TBEV infection.

T cell responses are essential for the production of NAbs. Specific
peptides of TBEV Core and E protein dominated the CD4þ T cell response
in both vaccinated and infected individuals (Kubinski et al., 2020).
Various novel candidate flaviviral vaccines have been evaluated for their
ability to enhance immunity by inducing virus-specific T cell responses. A
previous study comparing the CD4þ T cell responses in mice induced by
rVSV encoding the ZIKV prM-E alone or together with the NS1 protein
revealed that the co-expression of NS1 increased the CD4þ IFN-γþ T cell
response and decreased the population of CD4þ TNF-αþ Th1 cells (Li
et al., 2018). Aberle et al. determined the levels of Th1-specific cytokines
(TNF-αþ, IL-2þ, and IFN-γþ), CD40 ligand, and the Th1
lineage-specifying transcription factor (Tbet) following stimulation with
peptides targeting the structural proteins (C, prM/M, and E) of TBEV in
the developed TBEV vaccine (Aberle et al., 2015). A similar approachwas
employed in this study, and the findings revealed that the levels of
multiple-cytokine-producing antiviral CD4þ T cells producing TNF-αþ,
IL-2þ, or IFN-γþ, increased in the immunized mice.
Multi-cytokine-producing cells are more effective at controlling viral
infection than single-cytokine producers (Makedonas and Betts, 2006;
Pantaleo and Harari, 2006; Kannanganat et al., 2007; Wilkinson et al.,
2012). These polyfunctional cells are possibly crucial for combating
acute viral infection by producing high amounts of IFN-γþ, and therefore
contribute to the immediate effector function of T cells (Darrah et al.,
2007; Weaver et al., 2013). The VLP vaccine developed in this study
could possibly elicit the T cell response, which may play a crucial role in
combating acute viral infection. However, TBEV-specific CD4þ T cell
responses are polyfunctional, while the cytokine patterns after vaccina-
tion with TBEV structure proteins were differed from those after TBEV
infection, mainly reflected in IFN-γ responses and proportions of
TNF-αþIL-2þ cells (Aberle et al., 2015). Thus, the assessment of CD4þ T
cell responses in VLP-immunizedmice after TBEV infection is also worthy
of further study to comprehensive analyze the T cell response of the
VLPs-based vaccine.

Our study also has some limitations. VLPs generated in this study
induced a T-cell mediated response, however, specific IgG subclasses in
the serumwas not detected. Generally, immunizations lead to memory B-
cell activation and promoted the Th1-dominated immune response
switch to a more balanced Th1/Th2 immune response. Additional studies
should identify the role of these T cells, for example, the levels of both
IgG2a and IgG1 isotypes. Furthermore, evidence for antibody-dependent
enhancement (ADE) of TBEV in vivo is lacking so far, whereas the po-
tential risk of enhanced infectivity should be taken into consideration in
the development of novel vaccines. The protective immunity of the VLPs
in vivo and the potential of the VLPs to induce ADE will be further
investigated in IFNAR�/� mice.

5. Conclusions

Taken together, we described the efficient construction of TBE VLPs
by plasmid-driven transfection of viral proteins in mammalian cells.
Vaccination with VLPs induces a neutralizing-antibody response, stimu-
lates multiple-cytokine-producing antiviral CD4þ T cell response, and
protects mice against lethal TBEV infection. We propose that TBEV VLPs
should be further developed as a safe and effective vaccine candidate to
protect humans against TBEV outbreaks.
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